

Open Workshop on Microalgae Market

Robert Reinhardt
AlgEn, algal technology centre, Slovenia
robert@algen.si

Agenda

- Introduction to Algae
- Algae and biogas: recycling nutrients and CO₂
- Algal-bacterial treatment of biogas digestate
- Algae as biogas feedstock with 3-5 times better efficiency compared to energy crops
- Biogas digestate as algal nutrient higher value products
- AlgaeBioGas project

Algae

- very large and diverse group of simple organisms
- mostly aquatic
- typically autotrophic photosynthetic
- from unicellular to multicellular
- not organized into distinct (plant) organs
- cyanobacteria, microalgae, macroalgae
- taxonomy ≠ technology

Modern (microbial) taxonomy

Macroalgae

Sargassum natans

Microalgae & cyanobacteria

Chlorella vulgaris

Arthrospira (Spirulina) sp.

Heomatoccoccus pluvialis

Scenedesmus quadricauda

Nannochloropsis

Botryococcus braunii

Dunaliella salina

Photosynthesis

Algae uses

- Energy use
 - Lipids -> biodiesel
 - Sacharids (carbohydrates) -> bioethanol
 - Biogas feedstock
- Organic fertilizers
- Animal food, fish food
- Human food
- Nutriceuticals (antioxydants, vitamines, PUFA poly-unsaturated fatty acids)
- Many more (mostly unknown) bio-active compounds

High protein

content

Algal Technology

How to grow and use algae

- Biology species, content, growth conditions
- Technology nutrients, CO₂, light
- Economy energy and cost efficiency

 Biorefinery – separation and down-stream processing

Open systems

Cyanotech, Hawaii

Sunchlorella, China

Sapphire Energy, USA

Large open production

Closed systems - photobioreactors

Algomed, Germany

Kibutz Kitura, Israel

A large closed system

- Roquette Klötze: Chlorella for food & feed
- 500 km glass tubes (600m³)
- 130 t/year

AlgaeBioGas Basic Cycle

AlgaeBioGas – model 1MWe plant

Anaerobic digestion

Possible optimizations

- Digestate treatment
- Feedstock production
- Algae production

Digestate as Fertilizer

Warning: This topic may be politically controversial

- By spreading the digestate we return exactly the same minerals that we removed by harvesting the energy feedstock
- Assumption: SAME area
- YES, but in liquid form:
 - highly diluted
 - high logistic cost (storage, transportation)
 - flushing the CEC of the soil
- Separation into solid and liquid phase
 - solid phase is useful as fertilizer
 - better logistics
 - same machinery
 - no liquid flush

Unterfrauner, 2010

- 40 weeks trial, 50 m³/ha
- Application of biogas fermentation residues can adversely affect soil fertility
- High content of free K ions -> acidification, overloading of the sorption complex, destruction of the aggregates
- Addition of $CaCO_3$, $MgCO_3$, $CaSO_4$, Al silicate improved the results significantly
- Unterfrauner, H, et al. 2010, Auswirkung von Biogasguelle auf Bodenparameter, 2.
 Umwelt oekologisches Symposium 2010, 59-64, Raumberg-Gumpenstein.

Digestate separation

1MWe model case

Digestate centrate

• What do we do with the liquid phase?

classical biological WWT is the most frequent answer

- high cost:
 - investment,
 - aeration power
 - bacterial sludge disposal
- Nutrients are lost
 - C, N-loss = energy
 - P-loss = substance, eutrophication
- GHG emissions
 - Aerobic treatment mostly converts biomass to CO₂

Biological Wastewater Treatment

Photosynthesis

Algal Bacterial (ALBA) Wastewater Treatment

Digestate treatment

Algal bacterial WWT (ALBA WWT) ideas

- at least 55 years old (e.g. Oswald 57)
- lagoon treatment
- shifting objectives in the past
- purpose of algal biomass
- algae : bacteria C : N
- more diverse microbial community

 > less sensitive to sudden changes (antibiotics, biocides, salt, ...)

A research topic of today

- No state of the art universal solutions
- Algae bacterial community is unstable
- Needs to be tightly controlled
- Digestate may be black no light for algae
- Removal of heavy metals, endocrine disruptors, accumulated toxic substances, ...
- Should be independent of weather

The ALBA pilot (Cornet Albaqua 2011)

Hybrid ALBA WWT

Many open issues

- dark light sections
- how long good oxygenation lasts?
- floc ecology
- Auto-flocculation
- how to control the microbial composition (algaebacteria balance)

Expected performance (digestate treatment)

- Model biogas CHP with 1 MWe
- to recycle major part of nutrients
- area 3 5 ha
- volume 3000 17000 m³
- 60 200 t algae bacterial biomass p.a.
- use approx the same amount of waste paper pulp
- replacing 120 400 t dry mass of corn = 360 1200 t of corn silage
- replacing 8 26 ha of corn fields

Optimization for biomass production

- Larger area
- Longer retention time
- More diluted digestate
- CO₂ introduction
- More algae, less bacteria

Algae as biogas substrate

- Hard to digest
- C : N ratio
 - high C substrate should be added (i.e. cellulose)
- Pretreatment required
 - Heating, enzymatic, fungal, bacterial, ultrasonification, pressure shock, ...
- Thermophilic process optimal
- If done properly biogas productivity comes close to corn silage (based on dry weight)
- Depends on species & composition

Economy

- More expensive than corn
- Makes sense:
 - if we have substantial non agricultural area available
 - if we leverage on energy crop subsidies
 - if we are co-producing high value products
- Digestate treatment makes sense:
 - always when the required area is available

High value products

- Extract some components of the biomass before returning it to AD
- Obvious ideas:
 - extract lipids for biodiesel (not really high value)
 - biofuels from algae are to be counted quadruple
 - extract proteins for animal feed
- Other uses biorefinery:
 - antioxydants, pigments, PUFA
 - biomass for food organic production
- Need for thorough preprocessing before use for animal feed, food or nutriceuticals – hygienization, removal of toxic substances, heavy metals, ...
- A combination of physical and biological pre-treatment
- Very high-valued products can afford high-priced nutrients

Economy

- Corn silage replacement: 200€/t
- Biofuels: 900€/t (tax release included)
- Spirulina for animal food: 7000€/t *
- Organic spirulina for human food: 20-70€/kg
- Astaxantin: 150 3000 €/kg (depends on purity)
- Phycocyanin: 20 2000000 €/kg (depends on purity)

AlgaeBioGas Project

- Algal treatment of biogas digestate and feedstock production
- An Eco-Innovation project (CIP-EIP-Eco-Innovation-2012)
- Pilot and market replication project
- Two partners:
 - AlgEn, algal technology centre,
 - KOTO, biogas operator, animal waste treatment facility both in Ljubljana, Slovenia

AlgaeBioGas Objectives

Objectives:

- Demonstration centre design, construction, operation
- Prepare technology for replication
- Market development activities

Now in Month 15:

- Demonstration centre operational
- Legislation analysis, LCA, business planning
- Complementary technologies being tested
- Technical development (controls, ponds)
- Presentations & visits starting

Demonstration centre

Subsystems

- Ponds: main & inoculation
- Mixing equipment
- Greenhouse
- Heating & cooling
- Exhaust gas supply (cooling, purification)
- Digestate supply (separation, anaerobic filter, storage)
- Sedimenter/ clarifier & recycling
- Control system

Location

Before construction

Construction

http://algaebiogas.eu/node/50

Greenhouse, ponds, mixing, CO₂

Digestate preparation

Control & instrumentation

Future

- Preparation for market replication
- Life Cycle Assessment
- Legislation analysis, marketing, partners
- Complementary technologies:
 - Digestate pre-treatment (Algadisk or "Algadisk 2.0" technology)
 - Auto(bio)flocculation
 - ALBA biomass pre-treatment for biogas
 - Animal feed trials (fish, chicken)
- Technical & manufacturing
 - More cost-effective
 - Better performance
 - More control
- Partners: marketing & implementation service
- Ready for second replication (at an early-adopter site challenge us)

The project approach

- nutrient content analysis
- heavy metals
- flue gases
- physical characteristics

- sizing and capacity planning
- energy balance
- materials balance
- life cycle assessment
- nutrient source, preparation & augmentation
- data collection: input, output & operating parameters
- variations of operating parameters
- extreme operations
- microbial community analysis

- construction
- installation
- operation
- project management
- supervision & auditing

PROJECT

lab scale testing & analysis

microbial community

feasibility study

project planning

pilot installation

adjustments & optimisation

final installation

monitoring, naintenance and support

- maintenance of algal bank
- knowledge of species & their characteristics
- maintenance of algal mixes
- adaptation procedures
- clone library
- markers

- process design
- pre-treatment
- downstream process
- land use, permits
- construction
- installation
-
- financing
- outsourcing

- optimizations for
 - biomass,
 - flocculation,
- bioproducts
- seasonal influences & extreme operations
- predator analysis

- data collection
- remote monitoringscheduled maintenance
 -
- spares
- repairs
- upgrades

Future 2

- ALBA technology development:
 - Partnership with Aqualia (coordinator of FP7 All-Gas project),
 PTS (coordinator of Cornet Albaqua and AlbaPro) ALBAtross proposal for H2020.
 - Cooperation with BFC (coordinator of similar Eco-innovation project CoFert).

Thank you for your attention

• Questions?

• Welcome to visit the Real demonstration centre.

- Grand opening in Spring 2015 sign-in for invitation.
- Combined with an (EABA) event Algae & Wastewater (first pre-announcement)

