

Algae and Biogas:

Establishment of Large Scale Demonstration Centre for Algal-Bacterial Digetate Treatment and Algae Biomass Production for Further Use

Miha Žitnik

AlgEn, algal technology centre, Slovenia

miha@algen.si

 An Eco-Innovation project (CIP-EIP-Eco-Innovation-2012)

- Duration: 2012 2016
- Partners:

AlgEn, algal technology center, d.o.o.

KOTO d.o.o. biogas operator, animal waste treatment facility, Ljubljana, Slovenia

AlgaeBioGas Project

Co-funded by the Eco-innovation Initiative of the European Union

Biogas Plants

- Several thousands biogas plants in EU
- Common challenges:
 - Optimisation of biogas and power production
 - Demand for affordable highly energetic substrates
 - Side products: biogas digestate, heat, flue gases
 (CO₂)

Biogas Digestate

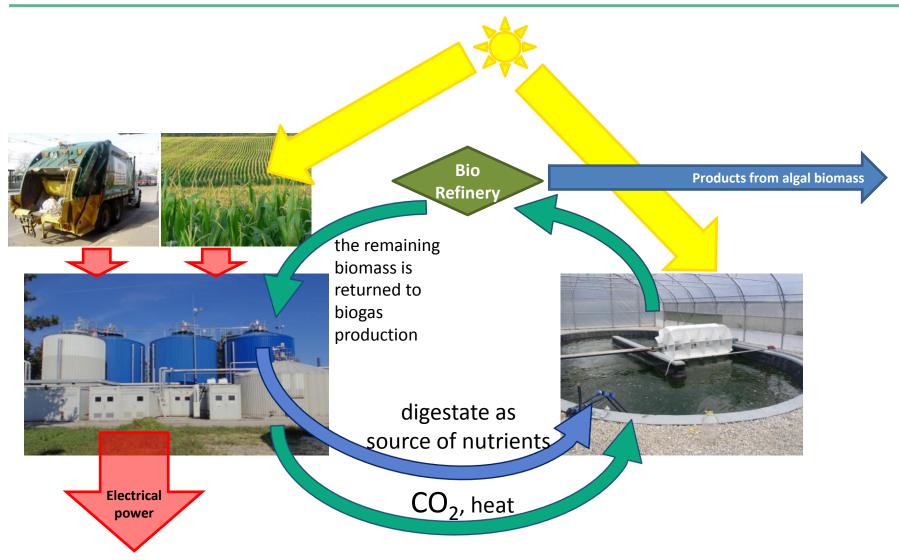
- Large quantity daily
- Composition and quality is specific for each biogas plant (substrate, fermentation mode, retention time...)
- Use as fertilizer
- Separation on solid and liquid phase

Digestate as Fertilizer

Warning: This topic may be politically controversial

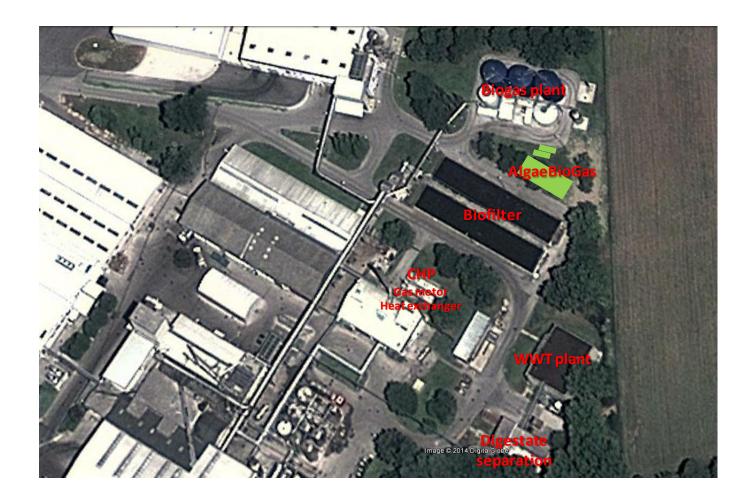
- By spreading the digestate we return exactly the same minerals that we removed by harvesting the energy feedstock
- Assumption: SAME area
- YES, but in liquid form:
 - highly diluted
 - high logistic cost (storage, transportation)
 - flushing the CEC of the soil
- Separation into solid and liquid phase
 - solid phase is useful as fertilizer
 - better logistics
 - same machinery
 - no liquid flush

Digestate Centrate


- What do we do with the liquid phase?
 - classical biological WWT is the most frequent answer
 - high cost:
 - investment
 - aeration power
 - bacterial sludge disposal
 - Nutrients are lost
 - C, N-loss = energy
 - P-loss = substance, eutrophication
 - GHG emissions
 - Aerobic treatment mostly converts biomass to CO₂

Algae and Biogas Digestate

- Many researches on lab scale:
 - Biogas digestate as a nutrient source for microalgae cultivation
 - Microalgal treatment of biogas digestate and nutrient removal from biogas digestate using microalgae
 - No pilot and no real scale instalation
- Aim of the ABG project:
 - Demonstration centre for microalgal-bacterial biogas digestate treatment and biomass production
 - Prepare technology for replication
 - Market development activities

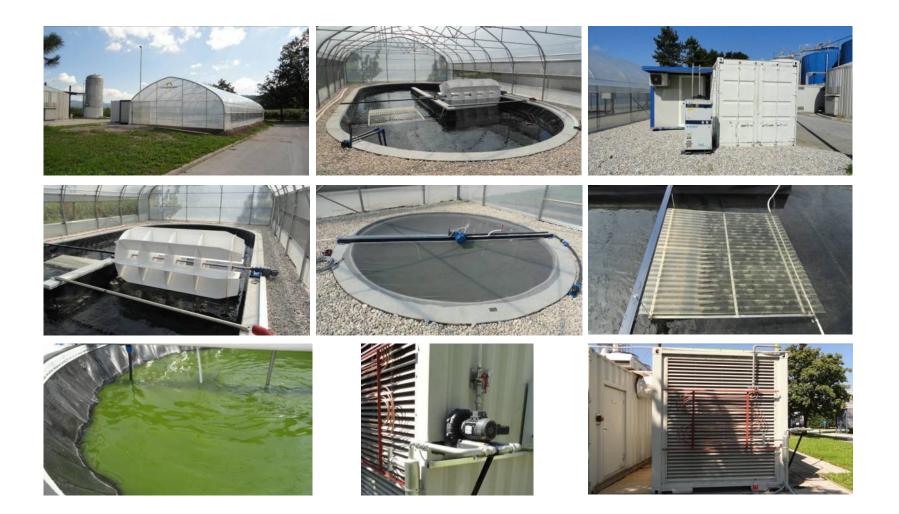

AlgaeBioGas Basic Cycle

Possible optimizations

- 1. Feedstock production for biogas
- 2. Microalgae biomass production
 - Makes sense if we have substantial non agricultural area available
 - if we leverage on energy crop subsidies
 - if we are co-producing high value products
- 3. Biogas digestate treatment + biomass production
 - Makes sense always when the required area is available

Demonstration Center - Location

Demonstration Center – Biogas Plant

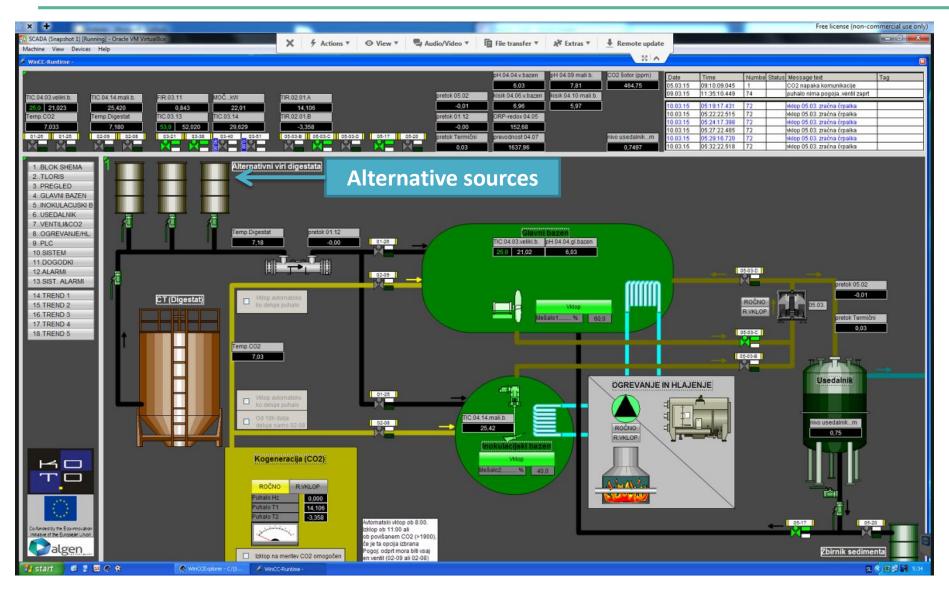

Capacity - substrat **Electric power Produced biogas:** Produced EE from biogas Produced digestate Liquid part after dehydration $\sim 68 \text{ m}^3/\text{day}$

13.000 t/ year 526 kWe 1,85 mio m³/year 3.800 MWh/year 26.400 m³/year

Termophilic biogas plant KOTO

Demonstration Center

Demonstration Center – Control & Instrumentation



Digestate Preparation

Demonstration Center - Control System

Demonstration Center – Data Collection (preliminary results)

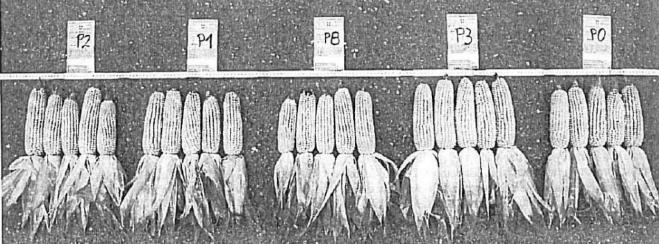
Results

- We are raising the load of biogas digestate in the process
- Monitoring the parameters
- LCA
- Monitoring biomass production and microalgae species
- Testing application potential of produced biomass (feed, fertilizer, bioplastic, biogas production...)
- Development and optimization of the process and technical equipment for large scale installation
- **Partners**: marketing & implementation service
- Ready for second replication (at an early-adopter site challenge us)

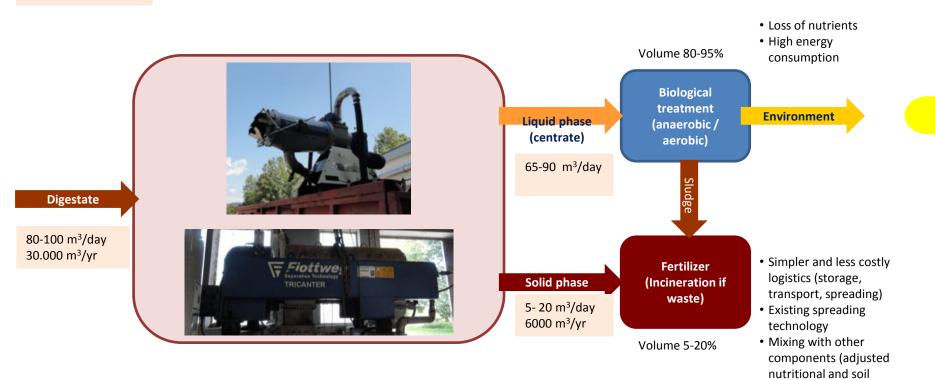
Thank you for your attention

Welcome to visit the ABG demonstration centre in Ljubljana, Slovenia

Miha Žitnik miha@algen.si info@algen.si


Future

- Preparation for market replication
- Life Cycle Assessment
- Legislation analysis, marketing, partners
- Complementary technologies:
 - Digestate pre-treatment (Algadisk or "Algadisk 2.0" technology)
 - Auto(bio)flocculation
 - ALBA biomass pre-treatment for biogas
 - Animal feed trials (fish, chicken)
- Technical & manufacturing
 - More cost-effective
 - Better performance
 - More control
- **Partners**: marketing & implementation service
- Ready for second replication (at an early-adopter site challenge us)


Unterfrauner, 2010

- 40 weeks trial, 50 m³/ha
- Application of biogas fermentation residues can adversely affect soil fertility
- High content of free K ions -> acidification, overloading of the sorption complex, destruction of the aggregates
- Addition of CaCO₃, MgCO₃, CaSO₄, Al silicate improved the results significantly
- Unterfrauner, H, et al. 2010, Auswirkung von Biogasguelle auf Bodenparameter, 2. Umwelt oekologisches Symposium 2010, 59-64, Raumberg-Gumpenstein.

Digestate separation

1MWe model case

conditioning value)