

Robert Reinhardt AlgEn, algal technology centre, Slovenia robert@algen.si

Agenda

- Introduction to biogas
- Algae and biogas: recycling nutrients and CO2
- Algal-bacterial **treatment** of biogas digestate

- Algae as biogas feedstock
- AlgaeBioGas project

Biogas

- Anaerobic digestion
- Many flavours:
 - Landfill gas
 - Wastewater sludge
 - Bio waste
 - Wastewater (anaerobic treatment)
 - Agricultural waste
 - Energy crops

• Biogas is the most (area) efficient biofuel

AlgaeBioGas

Co-funded by the Eco-innovation Initiative of the European Union

Biogas

Biogas plants

- Different technology levels
- Mesophilyc / thermophilic
- Biogas use
 - Heat
 - Combined heat and power (CHP)
 - Gas networks (enriched biogas)
- Legislation & subsidies
 - Gas grid \leftrightarrow CHP
 - Waste \leftrightarrow energy crops
 - Access to power grid
 - Nitrogen vulnerable zones

EurObserv'ER

Initiative of the European Unior

Biogas digestate

- Ideally: all organics consumed
- Ideal agricultural fertilizer

Co-funded by the Eco-innovation Initiative of the European Union AlgaeBioGas

 CO_2

Biogas digestate

- In reality:
 - Very dilute (80-100 m³/ha)
 - Logistics
 - Storage
 - Transportation
 - Machinery
 - Agro-technical problems
 - Liquid
 - Nutrient flushing from soil
- Separation to liquid and solid phase
 - Solid like ordinary fertilizer
 - Liquid wastewater, limited application to soil
- Waste, end-of-waste directive, control & monitoring

Liquid biogas digestate

- One of the hard-to-treat substances
- COD 8000 50000 mg O₂/L
- Classical WW processing $(3 20 \in /m^3)$
 - Energy consuming conversion or organics and nutrients to $\rm CO_2$ and $\rm N_2$
 - Loss of energy and nutrients
- Alternatives:
 - Drying
 - Ultrafiltering
 - Reverse osmosis
- Algal treatment

Initiative of the European Unior

AlgaeBioGas Basic Cycle

Optimizations

- Digestate treatment
- Feedstock production
- Algae production

Initiative of the European Union

Algal Bacterial (ALBA) Wastewater Treatment

Algal bacterial WWT (ALBA WWT) ideas

- at least 55 years old (e.g. Oswald 57)
- lagoon treatment
- shifting objectives in the past
- purpose of algal biomass
- algae : bacteria C : N
- more diverse microbial community → less sensitive to sudden changes (antibiotics, biocides, salt, ...)

A research topic of today

- No state of the art universal solutions
- Algae bacterial community is unstable
- Needs to be tightly controlled
- Digestate may be black no light for algae
- Removal of heavy metals, accumulated toxic substances, salt, ...

AlgaeBioGas

Should be independent of weather

Many open issues

- dark light sections
- how long good oxygenation lasts?
- floc ecology
- Auto-flocculation

Initiative of the European Unior

how to control the microbial composition (algaebacteria balance)

Optimization for biomass production

- Larger area
- Longer retention time
- More diluted digestate
- CO₂ introduction
- More algae, less bacteria

Algae as biogas substrate

- Hard to digest
- C : N ratio
 - high C substrate should be added (i.e. cellulose)
- Pretreatment required
 - Heating, enzymatic, fungal, bacterial, ultrasonification, pressure shock, ...
- Thermophilic process optimal
- If done properly biogas productivity comes close to corn silage (based on dry weight)

AlgaeBioGas

Depends on species & composition

AlgaeBioGas Project

- Algal treatment of biogas digestate and feedstock production
- An Eco-Innovation project (CIP-EIP-Eco-Innovation-2012)
- Pilot and market replication project
- Two partners:
 - AlgEn, algal technology centre,
 - KOTO, biogas operator, animal waste treatment facility both in Ljubljana, Slovenia

AlgaeBioGas Objectives

- Objectives:
 - Demonstration centre design, construction, operation
 - Prepare technology for replication
 - Market development activities
- Now in Month 27:
 - Demonstration centre operational
 - Legislation analysis, LCA, business planning
 - Complementary technologies being tested

- Technical development (controls, ponds)
- Presentations & visits

- Greenhouse
- Heating & cooling
- Exhaust gas supply (cooling, purification)
- Digestate supply (separation, anaerobic filter, storage)

- Sedimenter/ clarifier & recycling
- Control system

Location

Before construction

Co-funded by the Eco-innovation Initiative of the European Union

Greenhouse, ponds, mixing, CO₂

Co-funded by the Eco-innovation Initiative of the European Union

Digestate preparation

Co-funded by the Eco-innovation Initiative of the European Union

Control & instrumentation

Co-funded by the Eco-innovation Initiative of the European Union

Observed performance (digestate treatment)

- Model biogas CHP with 1 MWe
- to recycle major part of nutrients
 - area 3 5 ha
 - volume 3000 17000 m³
 - 60 200 t algae bacterial biomass p.a.
 - use approx the same amount of waste paper pulp
 - replacing 120 400 t dry mass of corn = 360 1200 t of corn silage

AlgaeBioGas

– replacing 8 – 26 ha of corn fields

Future

- Preparation for market replication
- Life Cycle Assessment
- Complementary technologies:
 - Digestate pre-treatment
 - Auto(bio)flocculation, DAF
 - ALBA biomass pre-treatment for biogas
 - Animal feed trials (fish, chicken)
- Technical & manufacturing
 - More cost-effective
 - Better performance
 - More control
- Partners: marketing & implementation service
- Ready for second replication (at an early-adopter site challenge us)

AlgaeBioGas

Initiative of the European Unior

Thank you for your attention

• Questions?

• Welcome to visit the Read demonstration centre.

