

Algae - Wastewater - Biogas

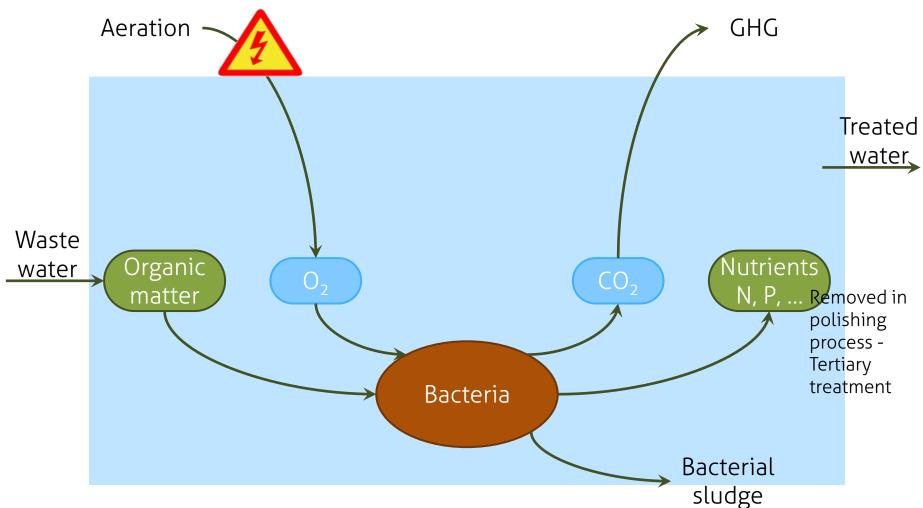
Robert Reinhardt
AlgEn, algal technology centre, Slovenia
robert@algen.si

Agenda

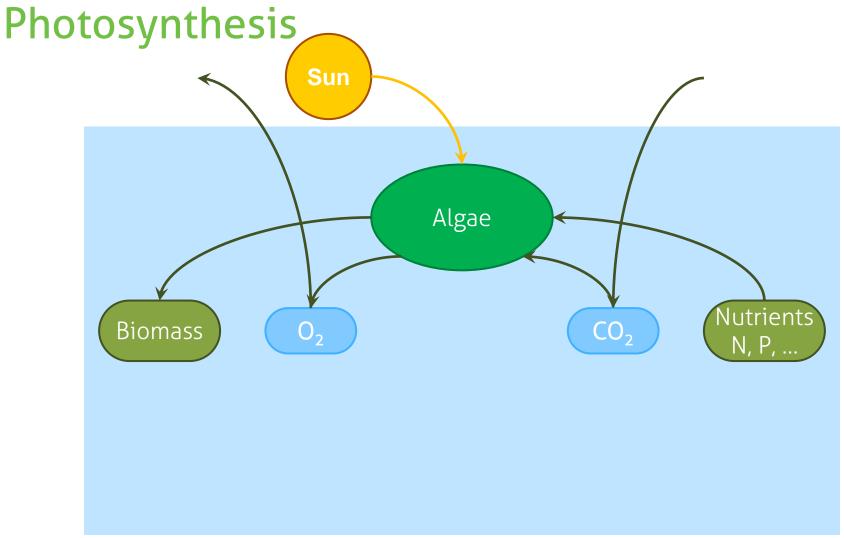
- Algae Wastewater Biogas
 - Algal Bacterial Wastewater treatment
 - Biogas recover energy from biomass
 - Algal-bacterial treatment of biogas digestate
 - Algae as biogas feedstock
- AlgaeBioGas project

Wastewater

- Wastewater
 - organic compounds
 - nitrogen (mostly ammonia)
 - other nutrients (P)
 - other pollutants (heavy metals)
 - Chemical/Biological Oxygen Demand (COD/BOD)
- Algae & wastewater
 - Nature's method to treat wastewater
 - Technologically used for at least 60 years



Algal bacterial process Biological Aerobic Wastewater Treatment



Algal bacterial process

Algal Bacterial (ALBA) Wastewater Treatment

Algal Bacterial (ALBA) Wastewater Treatment

- lagoon treatment
- shifting objectives in the past (energy was "free", no GHG paranoia)
- purpose of ALBA biomass
- algae : bacteria C : N
- can use additional CO₂

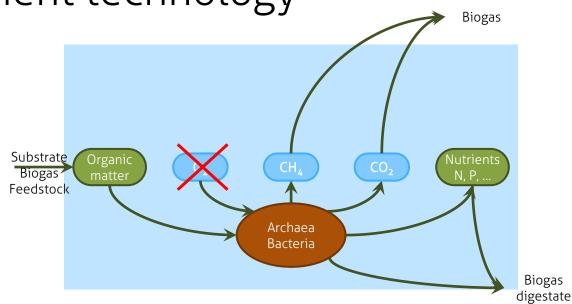
A research topic of today

- no state of the art universal solutions
- WW may be dark no light for algae no oxygen for bacteria
- removal of heavy metals, accumulated toxic substances, salt, ...
- should be independent of weather
- harvesting sedimentation, DAF, ...
- dark / light sections how long oxygenation lasts?
- floc ecology, auto-flocculation

Wastewater as nutrient source

- Negative price of nutrients
- Essential for any large scale low cost products

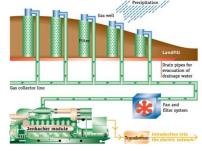
 Algae & biogas – basic technology for energy and nutrient recuperation from wastewater



Biogas

- Anaerobic digestion
 - Anaerobic bacteria (Archaea) converting organic matter to methane (and H₂, CO₂, H₂S, ...)

A waste treatment technology



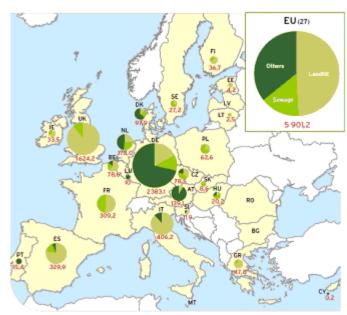
Biogas flavours

- Landfill gas
- Wastewater sludge
- Bio waste
- Wastewater (anaerobic treatment)
- Agricultural waste
- Energy crops

Biogas is the most efficient biofuel

SI group

HTI tanks

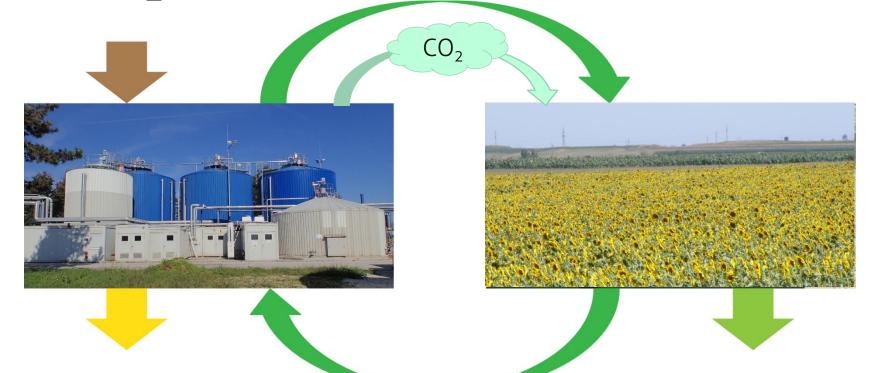


Biogas plants

- Different technology levels
- Mesophilyc / thermophilic
- Biogas use
 - Heat
 - Combined heat and power (CHP)
 - Gas networks (enriched biogas)
- Legislation & subsidies

 - Waste ↔ energy crops
 - Access to power grid
 - Nitrogen vulnerable zones

EurObserv'ER



Biogas digestate

- Ideally: all organics consumed
- Ideal agricultural fertilizer

Biogas digestate

- In reality:
 - Very dilute (80-150 m³/ha)
 - Logistics
 - Storage
 - Transportation
 - Machinery
 - Agro-technical problems
 - Liquid
 - Nutrient flushing from soil
- Separation to liquid and solid phase
 - Solid like ordinary fertilizer
 - Liquid wastewater, with only limited application to soil
- Waste, end-of-waste directive, control & monitoring

Liquid biogas digestate

- One of the hard-to-treat substances
- COD $8000 50000 \text{ mg } O_2/L$
- Classical WW processing (3 20 €/m³)
 - Energy consuming conversion or organics and nutrients to CO₂ and N₂
 - Loss of energy and nutrients
- Alternatives:
 - Drying
 - Ultrafiltering
 - Reverse osmosis
 - **...**
- Algal treatment

AlgaeBioGas Basic Cycle

digestate as source of nutrients

biogas

biogas heat & power algal biogas substrate

Algae as biogas substrate

- Hard to digest
- C: N ratio (high C substrate should be added)
- Pre-treatment required
 - Heating, enzymatic, fungal, bacterial, ultrasonification, pressure shock, ...
- Thermophilic process optimal
- If done properly biogas productivity comes close to corn silage (based on dry weight)
- Depends on species & composition
- Cannot be cost effective unless grown on wastewaer or digestate

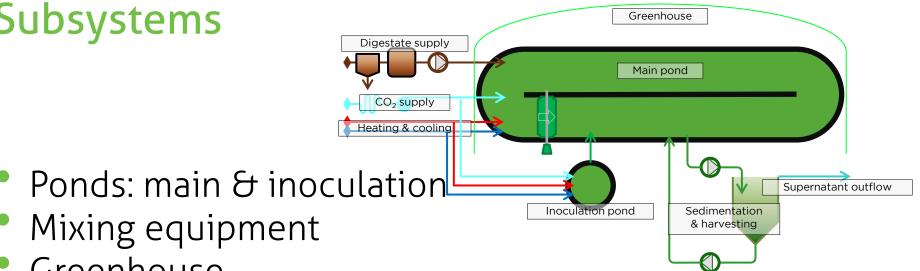
AlgaeBioGas Project

- Algal treatment of biogas digestate and feedstock production
- An Eco-Innovation project (CIP-EIP-Eco-Innovation-2012)
- Pilot and market replication project
- Two partners:
 - AlgEn, algal technology centre,
 - KOTO, biogas operator, animal waste treatment facility both in Ljubljana, Slovenia

AlgaeBioGas Objectives

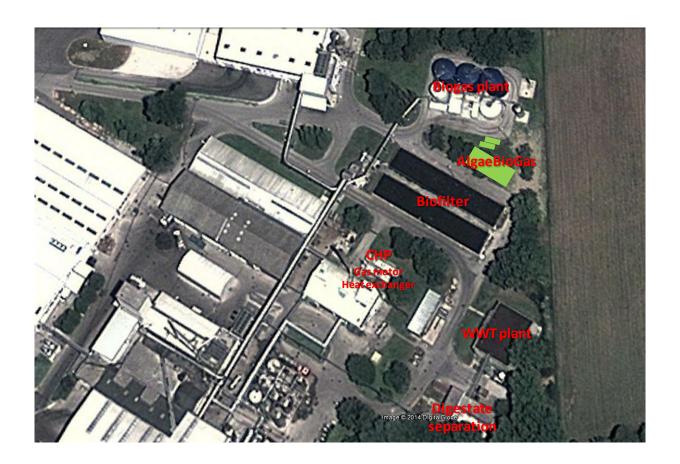
Objectives:

- Demonstration centre design, construction, operation
- Prepare technology for replication
- Market development activities
- Now in Month 32/36:
 - Demonstration centre operational
 - Legislation analysis, LCA, business planning
 - Complementary technologies being tested
 - Technical development (controls, ponds)
 - Presentations & visits

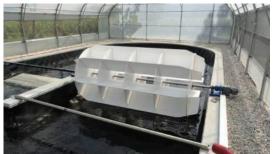


Subsystems

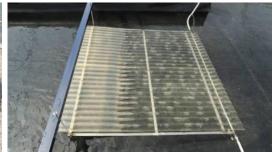
- Mixing equipment
- Greenhouse
- Heating & cooling
- Exhaust gas supply (cooling, purification)
- Digestate supply (separation, anaerobic filter, storage)
- Sedimenter / clarifier & recycling
- Switching to DAF
- Control system



Location

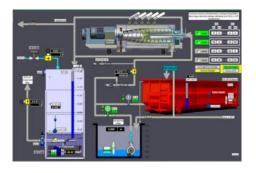


Greenhouse, ponds, mixing, CO₂



Digestate preparation

Control & instrumentation



Observed performance (digestate treatment)

- Model biogas CHP with 1 MWe
- to recycle major part of nutrients
 - area 3 5 ha
 - volume 3000 17000 m³
 - 60 200 t algae bacterial biomass p.a.
 - use approx the same amount of waste paper pulp (or other carbon rich substrate)
 - replacing 120 400 t dry mass of corn = 360 1200 t of corn silage
 - replacing 8 26 ha of corn fields

Future

- Installation #2 in Italy (0.5 ha)
- Complementary technologies
 - Digestate pre-treatment
 - Auto(bio)flocculation, DAF
 - ALBA biomass pre-treatment for biogas
 - Animal feed trials (fish, chicken)
- Technical & manufacturing
 - More cost-effective ponds
 - Better performance & more control
- Partners: sales & implementation service

Future

- An H2020 project Saltgae: Demonstration project to prove the techno-economic feasibility of using algae to treat saline wastewater from the food industry (in negotiation phase)
- Demonstration site for treating tannery wastewater

Thank you for your attention

• Questions?

• Welcome to visit the Reguesions demonstration centre.

