

Algae - Wastewater - Biogas

Robert Reinhardt
AlgEn, algal technology centre, Slovenia
robert@algen.si

Agenda

- Biogas in Slovenia
- Algae Wastewater Biogas
 - Introduction to algae
 - Algal-bacterial treatment of biogas digestate
 - Algae as biogas feedstock
- AlgaeBioGas project

Biogas in Slovenia

- 23 plants, 14 operational
- Size 0.3 5 MWe
- 2-3 food waste, 2 WW sludge, 9-10 agricultural
- Total power produced in 2014: 141 GWh
- Feed-in tariffs: ~160€/MWh (depends on size, substrate & heat used)
- No biomethane subsidies > no gas enrichment

Algae

- aquatic organisms
- macroalgae, microalgae, cyanobacteria
- many species, poorly explored
- "plants" & products of the future
- photosynthesis
- huge potential

Algal products

- Biofuels
- Bioplastics
- Biofertilizers
- Animal feed
- Food
- Omega-3 fatty acids
- Protein rich biomass
- Antioxidants
- Vitamins
- Cosmetics
- Nutriceuticals
- Custom made bioproducts (vaccines, antibodies, fine chemicals, ...)

Algal technology

How to grow, store, process and use algae.

Plants	Algae

agriculture, agronomy

6000 years

seasonal crops

Storage

fertile arable land

fertilizer loss

chemical fertilizers

water loss

algal technology

60 years

continuous harvesting

on demand

better light & area efficiency

water, degraded land, sea

no loss, reuse of growth media

wastewater

closed systems

Algal technology

Biology: species, ingredients, growth conditions,

Technology: nutrients, CO₂, light

Economy: energy and cost efficiency

 Biorefinery: separation & down-stream processing

Algal fuels

- Already using algal fuels (produced millions of years ago)
- Hydrocarbons: best energy carrier (mass, volume)
- Drop-in replacement (existing infrastructure)
- Alternatives not applicable everywhere (airliners, trucks, ships)

Algal fuels – all transportation fuels

All transportation fuels for EU

*Wijffels & Barbosa (2010) An outlook on microalgal biofuels. Science.. 379: 796-799.)

Algal fuel advantages

- Alternative to plant biofuels
- Non competitive to ad production
 Faster growth, by alds

- No seasonal companies

 Better use

 Better use

 Jter
- Possible i. ne production
- Higher lipid content

A biorefinery concept is required

Other uses of algae (here & now)

- WW production ~15000 t/year
- Food (Chlorella, Spirulina)
- Nutriceuticals (asthaxantin, carotenes, Omega-3 PUFA)
- Fish and animal feed
- Biofertilizers
- Research

AlgEn, algal technology centre

- Established 2010 in Ljubljana
- Four partners, many students
- Financing: FFFF & R&D (EU) grants
- Vision:
 - Develop
 - Partner
 - Integrate
 - Be ready
 - Play & have fun

Biogas digestate

- Ideally: all organics consumed
- Ideal agricultural fertilizer

Biogas digestate

- In reality:
 - Very dilute (80-150 m³/ha)
 - Logistics
 - Storage
 - Transportation
 - Machinery
 - Agro-technical problems
 - Liquid
 - Nutrient flushing from soil
- Separation to liquid and solid phase
 - Solid like ordinary fertilizer
 - Liquid wastewater, with only limited application to soil
- Waste, end-of-waste directive, control & monitoring

Liquid biogas digestate

- One of the hard-to-treat substances
- COD $8000 50000 \text{ mg } O_2/L$
- Classical WW processing (3 20 €/m³)
 - Energy consuming conversion or organics and nutrients to ${\rm CO_2}$ and ${\rm N_2}$
 - Loss of energy and nutrients
- Alternatives:
 - Drying
 - Ultrafiltering
 - Reverse osmosis
 - ...
- Algal treatment

AlgaeBioGas Basic Cycle

Algae as biogas substrate

- Hard to digest
- C: N ratio (high C substrate should be added)
- Pre-treatment required
 - Heating, enzymatic, fungal, bacterial, ultrasonification, pressure shock, ...
- Thermophilic process optimal
- If done properly biogas productivity comes close to corn silage (based on dry weight)
- Depends on species & composition
- Cannot be cost effective unless grown on wastewaer or digestate

AlgaeBioGas Project

- Algal treatment of biogas digestate and feedstock production
- An Eco-Innovation project (CIP-EIP-Eco-Innovation-2012)
- Pilot and market replication project
- Two partners:
 - AlgEn, algal technology centre,
 - KOTO, biogas operator, animal waste treatment facility both in Ljubljana, Slovenia

AlgaeBioGas Objectives

Objectives:

- Demonstration centre design, construction, operation
- Prepare technology for replication
- Market development activities

Now in Month 32/36:

- Demonstration centre operational
- Legislation analysis, LCA, business planning
- Complementary technologies being tested
- Technical development (controls, ponds)
- Presentations & visits

Subsystems

Greenhouse Digestate supply Main pond CO₂ supply Heating & cooling Ponds: main & inoculation Supernatant outflow Sedimentation & harvesting

- Mixing equipment
- Greenhouse
- Heating & cooling
- Exhaust gas supply (cooling, purification)
- Digestate supply (separation, anaerobic filter, storage)
- Sedimenter / clarifier & recycling
- Switching to DAF
- Control system

Location

Greenhouse, ponds, mixing, CO₂

Digestate preparation

Control & instrumentation

Observed performance (digestate treatment)

- Model biogas CHP with 1 MWe
- to recycle major part of nutrients
 - area 3 5 ha
 - volume 3000 17000 m³
 - 60 200 t algae bacterial biomass p.a.
 - use approx the same amount of waste paper pulp (or other carbon rich substrate)
 - replacing 120 400 t dry mass of corn = 360 1200 t of corn silage
 - replacing 8 26 ha of corn fields

Future

- Installation #2 in Italy (0.5 ha)
- Complementary technologies:
 - Digestate pre-treatment
 - Auto(bio)flocculation, DAF
 - ALBA biomass pre-treatment for biogas
 - Animal feed trials (fish, chicken)
- Technical & manufacturing
 - More cost-effective ponds
 - Better performance & more control
- Partners: sales & implementation service

Future

- An H2020 project Saltgae: Demonstration project to prove the techno-economic feasibility of using algae to treat saline wastewater from the food industry (in negotiation phase)
- Demonstration site for treating tannery wastewater

Thank you for your attention

• Questions?

Welcome to visit the

Wastewater

- Wastewater
 - organic compounds
 - nitrogen (mostly ammonia)
 - other nutrients (P)
 - other pollutants (heavy metals)
 - Chemical/Biological Oxygen Demand (COD/BOD)
- Algae & wastewater
 - Nature's method to treat wastewater
 - Technologically used for at least 60 years

Algal bacterial process Biological Aerobic Wastewater Treatment

Algal bacterial process

Algal Bacterial (ALBA) Wastewater Treatment

Algal Bacterial (ALBA) Wastewater Treatment

- lagoon treatment
- shifting objectives in the past (energy was "free", no GHG paranoia)
- purpose of ALBA biomass
- algae : bacteria C : N
- can use additional CO₂

A research topic of today

- no state of the art universal solutions
- algae bacterial community is unstable → needs to be tightly controlled
- WW may be dark no light for algae no oxygen for bacteria
- removal of heavy metals, accumulated toxic substances, salt, ...
- should be independent of weather
- harvesting sedimentation, DAF, ...
- dark / light sections how long oxygenation lasts?
- floc ecology, auto-flocculation

Wastewater as nutrient source

- Negative price of nutrients
- Essential for any large scale low cost products
- Algae & biogas basic technology for energy and nutrient recuperation from wastewater

Biogas

- Anaerobic digestion
 - Anaerobic bacteria (Archaea) converting organic matter to methane (and H₂, CO₂, H₂S, ...)
- A waste treatment technology

Biogas flavours

- Landfill gas
- Wastewater sludge
- Bio waste
- Wastewater (anaerobic treatment)
- Agricultural waste
- Energy crops
- Biogas is the most efficient biofuel

SI group

HTI tanks

Biogas plants

- Different technology levels
- Mesophilyc / thermophilic
- Biogas use
 - Heat
 - Combined heat and power (CHP)
 - Gas networks (enriched biogas)
- Legislation & subsidies
 - Gas grid ↔ CHP
 - Waste ↔ energy crops
 - Access to power grid
 - Nitrogen vulnerable zones

EurObserv'ER

