

Algae – Wastewater – Biogas

AlgaeBioGas: Establishment of Large Scale Demonstration Centre for Algal-Bacterial Digestate Treatment and Algal Biomass Production Robert Reinhardt

AlgEn, algal technology centre, Slovenia robert@algen.si

Agenda

- Algae Wastewater Biogas
 - Algae
 - Algal Bacterial Wastewater treatment
 - Biogas landscape
 - Biogas: carbon and nutrient cycle
- AlgaeBioGas project
 - algal-bacterial treatment of biogas digestate
 - algae as biogas feedstock
- Saltgae project
 - Introduction

Algae

- Aquatic photosynthetic organisms
 - Macro algae
 - Micro alage
 - Cyanobacteria

Algae = technical term

Algal technology

Botanics ⇔ agronomy
Phycology ⇔ algal technology

thousands of years tens of years

Wastewater

- Wastewater
 - Organics, Nitrogen, Phosphorus = nutrients
 - Other pollutants (heavy metals, micro-pollutants)
 - Chemical/Biological Oxygen Demand (COD/BOD)
- Wastewater treatment
- Algae & wastewater
 - Nature's method to treat wastewater
 - Technologically used for at least 60 years

Algal bacterial process Biological Aerobic Wastewater Treatment

Algal bacterial process

Algal Bacterial (ALBA) Wastewater Treatment

Algal Bacterial (ALBA) Wastewater Treatment

- lagoon treatment
- shifting objectives in the past (energy was "free", no GHG paranoia)
- use / valorisation of ALBA biomass
- algae : bacteria C : N
- more diverse microbial community >> less sensitive to sudden changes (antibiotics, biocides, salt, ...)
- can use additional CO₂

A research topic of today

- no state of the art universal solutions
- Algal bacterial community is unstable -> needs to be controlled
- WW may be dark no light for algae no oxygen for bacteria
- removal of heavy metals, accumulated toxic substances, salt, ...
- should be independent of weather
- harvesting sedimentation, DAF, ...
- dark / light sections
- floc ecology, auto-flocculation

Biogas landscape

Mesophilic – Thermophilic

Low – High tech

Biogas plants

- Legislation & policy
 - Gas grid \leftrightarrow CHP
 - Waste ↔ energy crops
 - Access to power grid
 - Nitrogen vulnerable zones
 - Subsidies
 - 15000+ biogas plants in EU

EurObserv'ER

Biogas digestate

- Ideally: all organics consumed
- Digestate = ideal agricultural fertilizer

Biogas digestate

- In reality:
 - Very dilute (80-150 m3/ha)
 - Logistics
 - Storage
 - Transportation
 - Machinery
 - Agro-technical problems
 - Liquid
 - Nutrient flushing from soil
- Separation to liquid and solid phase
 - Solid like ordinary fertilizer
 - Liquid wastewater only limited application as fertilizer
- Waste, end-of-waste directive, control & monitoring

Liquid phase of biogas digestate

- One of the hard-to-treat substances
- COD 5000 50000 mg O₂/L
- Classical WW processing (3 20 €/m³)
 - Energy consuming conversion or organics and nutrients to CO₂ and N₂
 - Loss of energy and nutrients
- Alternatives:
 - Drying
 - Ultrafiltering
 - Reverse osmosis
 - ..
 - Algal treatment

AlgaeBioGas Basic Cycle

Algae as biogas substrate

- Hard to digest
- C: N ratio (high C substrate should be added)
- Pre-treatment required
 - Heating, enzymatic, fungal, bacterial, ultrasonification, pressure shock, ...
- Thermophilic process optimal
- If done properly biogas productivity comes close to corn silage (based on dry weight)
- Depends on species & composition
- Cannot be cost effective unless grown on wastewater or digestate (nutriens with negative cost)
- Fundamental technology for WW nutrient and energy recovery

AlgaeBioGas Project

- Algal treatment of biogas digestate and feedstock production
- An Eco-Innovation project (CIP-EIP-Eco-Innovation-2012)
- Pilot and market replication project
- Two partners:
 - AlgEn, algal technology centre,
 - KOTO, biogas operator, animal waste treatment facility both in Ljubljana, Slovenia

Initiative of the European Union

AlgaeBioGas Objectives

- Objectives:
 - Demonstration centre design, construction, operation
 - Prepare technology for replication
 - Market development activities
- Finished in August 2016:
 - Demonstration centre operational
 - Legislation analysis, LCA, business planning
 - Complementary technologies being tested
 - Technical development (controls, ponds)
 - Presentations & visits
 - Installation #2 is being built

Subsystems

- Ponds: main & inoculation
- Mixing equipment
- Greenhouse
- Heating & cooling
- Exhaust gas supply (cooling, purification)
- Digestate supply (separation, anaerobic filter, storage)
- Sedimenter / clarifier & recycling
- Switching to DAF
- Control system

Location

Greenhouse, ponds, mixing, CO₂

Digestate preparation

Control & instrumentation

Observed performance in digestate treatment

- Running for more than 2 years
- Weather dependent (performance 3 to 1)
- Natural species only
- Sedimentation does not work DAF
- Model biogas CHP with 1 MWe to recycle major part of nutrients:
 - area 3 5 ha
 - volume 3000 17000 m³
 - 60 200 t algae bacterial biomass p.a.
 - use approx the same amount of carbon rich substrate
 - replacing 120 400 t dry mass of corn = 360 1200 t of corn silage
 - replacing 8 26 ha of corn fields

COD and NH4 removal performance

Digestate inflow

Future

AlgaeBioGas

- Installation #2 in Italy (0.5 ha)
- Complementary technologies:
 - Digestate pre-treatment
 - Auto(bio)flocculation, DAF
 - ALBA biomass pre-treatment for biogas
 - Animal feed trials (fish, chicken)
- Technical & manufacturing
 - More cost-effective ponds
 - Better performance & more control
- Partners: sales & implementation service

Saltgae

- Demonstration project to prove the techno-economic feasibility of using algae to treat saline wastewater from the food industry
- Horizon 2020 project
- Started in June 2016
- 19 partner consortium
- 3 demo sites:
 - Slovenia: AlgaeBioGas → demonstration site for treating tannery wastewater
 - Italy: salty whey from cheese industry
 - Israel: high intensity fish farming to algal products

Saltgae

- Anaerobic digestion in salty conditions: two phase, dilution
- Process kinetic modelling (ALBA, N cycles?)
- CFD modelling (ponds, mixing, ...)
- Redesign of HRAP
- High BOD and Low BOD processes

Thank you for your attention

- Questions?
- Welcome to visit the demonstration centres.

