Algae – Wastewater – Biogas

Robert Reinhardt
AlgEn, algal technology centre, Slovenia
robert@algen.si
Agenda

• Algae – Wastewater – Biogas
 ▪ Algal Bacterial Wastewater treatment
 ▪ Biogas – recover energy from biomass
 ▪ Algal-bacterial treatment of biogas digestate
 ▪ Algae as biogas feedstock

• AlgaeBioGas project
Wastewater

• Wastewater
 - organic compounds
 - nitrogen (mostly ammonia)
 - other nutrients (P)
 - other pollutants (heavy metals)
 - Chemical/Biological Oxygen Demand (COD/BOD)

• Algae & wastewater
 - Nature’s method to treat wastewater
 - Technologically used for at least 60 years
Algal bacterial process
Biological Aerobic Wastewater Treatment

Aeration ➔ Bacteria ➔ GHG

Waste water ➔ Organic matter ➔ Aeration ➔ Bacteria ➔ Nutrients (N, P, ...)

O₂ ➔ Bacteria ➔ CO₂

Bacterial sludge ➔ Removed in polishing process - Tertiary treatment ➔ Treated water
Algal bacterial process
Photosynthesis

- Sun
- Algae
- Biomass
- O₂
- CO₂
- Nutrients (N, P, ...)

CO₂ + H₂O → O₂ + Biomass
Algal Bacterial (ALBA) Wastewater Treatment

Sun

Waste water

Organic matter

O₂

CO₂

Nutrients N, P, ...

Algae

Bacteria

Treated water

Algal Bacterial sludge
Algal Bacterial (ALBA) Wastewater Treatment

• lagoon treatment
• shifting objectives in the past (energy was “free”, no GHG paranoia)
• purpose of ALBA biomass
• algae : bacteria - C : N
• more diverse microbial community → less sensitive to sudden changes (antibiotics, biocides, salt, ...)
• can use additional CO₂
A research topic of today

- no state of the art universal solutions
- algae bacterial community is unstable → needs to be tightly controlled
- WW may be dark – no light for algae – no oxygen for bacteria
- removal of heavy metals, accumulated toxic substances, salt, ...
- should be independent of weather
- harvesting – sedimentation, DAF, ...
- dark / light sections - how long oxygenation lasts?
- floc ecology, auto-flocculation
Wastewater as nutrient source

• Negative price of nutrients
• Essential for any large scale low cost products

• Algae & biogas – basic technology for energy and nutrient recuperation from wastewater
Biogas

• Anaerobic digestion
 ▪ Anaerobic bacteria (Archaea) converting organic matter to methane (and H_2, CO_2, H_2S, …)

• A waste treatment technology
Biogas flavours

- Landfill gas
- Wastewater sludge
- Bio waste
- Wastewater (anaerobic treatment)
- Agricultural waste
- Energy crops

- Biogas is the most efficient biofuel
Biogas plants

• Different technology levels
• Mesophilyc / thermophilic
• Biogas use
 ▪ Heat
 ▪ Combined heat and power (CHP)
 ▪ Gas networks (enriched biogas)
• Legislation & subsidies
 ▪ Gas grid ↔ CHP
 ▪ Waste ↔ energy crops
 ▪ Access to power grid
 ▪ Nitrogen vulnerable zones
Biogas digestate

• Ideally: all organics consumed
• Ideal agricultural fertilizer
Biogas digestate

• In reality:
 ▪ Very dilute (80-150 m³/ha)
 ▪ Logistics
 • Storage
 • Transportation
 • Machinery
 ▪ Agro-technical problems
 • Liquid
 • Nutrient flushing from soil

• Separation to liquid and solid phase
 ▪ Solid – like ordinary fertilizer
 ▪ Liquid – wastewater, with only limited application to soil

• Waste, end-of-waste directive, control & monitoring
Liquid biogas digestate

- One of the hard-to-treat substances
- COD 8000 – 50000 mg O₂/L
- Classical WW processing (3 – 20 €/m³)
 - Energy consuming conversion or organics and nutrients to CO₂ and N₂
 - Loss of energy and nutrients
- Alternatives:
 - Drying
 - Ultrafiltering
 - Reverse osmosis
 - ...
- Algal treatment
AlgaeBioGas Basic Cycle

digestate as source of nutrients

CO₂

biogas heat & power

algal biogas substrate

algal products
Algae as biogas substrate

- Hard to digest
- C : N ratio (high C substrate should be added)
- Pre-treatment required
 - Heating, enzymatic, fungal, bacterial, ultrasonification, pressure shock, ...
- Thermophilic process optimal
- If done properly biogas productivity comes close to corn silage (based on dry weight)
- Depends on species & composition
- Cannot be cost effective unless grown on wastewaer or digestate
AlgaeBioGas Project

• Algal treatment of biogas digestate and feedstock production
• An Eco-Innovation project (CIP-EIP-Eco-Innovation-2012)
• Pilot and market replication project
• Two partners:
 • AlgEn, algal technology centre,
 • KOTO, biogas operator, animal waste treatment facility both in Ljubljana, Slovenia
AlgaeBioGas Objectives

• Objectives:
 • Demonstration centre design, construction, operation
 • Prepare technology for replication
 • Market development activities

• Now in Month 32/36:
 • Demonstration centre operational
 • Legislation analysis, LCA, business planning
 • Complementary technologies being tested
 • Technical development (controls, ponds)
 • Presentations & visits
Subsystems

- Ponds: main & inoculation
- Mixing equipment
- Greenhouse
- Heating & cooling
- Exhaust gas supply (cooling, purification)
- Digestate supply (separation, anaerobic filter, storage)
- Sedimenter / clarifier & recycling
- Switching to DAF
- Control system
Location
Greenhouse, ponds, mixing, \(\text{CO}_2 \)
Digestate preparation
Control & instrumentation
Observed performance (digestate treatment)

• Model biogas CHP with 1 MWe
• to recycle major part of nutrients
 ▪ area 3 - 5 ha
 ▪ volume 3000 – 17000 m³
 ▪ 60 – 200 t algae bacterial biomass p.a.
 ▪ use approx the same amount of waste paper pulp (or other carbon rich substrate)
 ▪ replacing 120 – 400 t dry mass of corn = 360 – 1200 t of corn silage
 ▪ replacing 8 – 26 ha of corn fields
Future

• Installation #2 in Italy (0.5 ha)
• Complementary technologies:
 - Digestate pre-treatment
 - Auto(bio)floculation, DAF
 - ALBA biomass pre-treatment for biogas
 - Animal feed trials (fish, chicken)
• Technical & manufacturing
 - More cost-effective ponds
 - Better performance & more control
• Partners: sales & implementation service
Future

• An H2020 project Saltgae: Demonstration project to prove the techno-economic feasibility of using algae to treat saline wastewater from the food industry (in negotiation phase)

• Demonstration site for treating tannery wastewater
Thank you for your attention

• Questions?

• Welcome to visit the demonstration centre.